Abstract

AbstractThis study investigates Bragg scatter signatures in dual-polarization radar observations, which are defined by low differential reflectivity values, as a proxy for convective boundary layer (CBL) depth. Using data from the WSR-88D in Twin Lakes, Oklahoma (KTLX), local minima in quasi-vertical profiles of are found to provide a reasonable estimate of CBL depth when compared with depth estimates from upper-air soundings from Norman, Oklahoma (KOUN), during 2014. The 243 Bragg scatter and upper-air sounding CBL depth estimates have a correlation of 0.90 and an RMSE of 254 m. Using Bragg scatter as a proxy for CBL depth was expanded to other seasons and locations—performing well in Wilmington, Ohio; Fairbanks, Alaska; Tucson, Arizona; Minneapolis, Minnesota; Albany, New York; Portland, Oregon; and Tampa, Florida—showing its potential usefulness in monitoring CBL depth throughout the year in a variety of geographic locations and meteorological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call