Abstract

ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents. Convallatoxin, a natural cardiac glycoside, exhibits potent anti-tumor activities. Literature has confirmed that PTHR1 is highly expressed in OS tissues and cells and downregulation of PTHR1 could decrease the invasion and growth of OS cells and increase tumor differentiation. In addition, PTHR1 could activate Wnt signaling pathway to promote the malignant functions of OS. In the present study, MG63 and U2OS cells were treated with 0, 12.5, 25, and 50 nM convallatoxin in order to elucidate the precise function of convallatox on the malignant behaviors of OS cells. Moreover, MG63 and U2OS cells treated with convallatoxin were transfected with Ov-PTHR1 or sh-DKK1, aiming to explore whether convallatoxin impeded the malignant progression of OS by modulating PTHR1 and Wnt/β-catenin pathway. CCK-8, wound healing and transwell assays were employed to assess the proliferation, migration, and invasion of OS cells. Differentiation markers (collagen 1, osteopontin, RANKL, Runx2, osteocalcin) were measured to evaluate OS cell differentiation. Results illuminated that convallatoxin suppressed proliferation, migration, and invasion as well as promoted osteogenic differentiation of OS cells. Besides, convallatoxin inhibited PTHR1 expression and inactivated Wnt/β-catenin pathway and PTHR1 overexpression activated Wnt/β-catenin pathway. Furthermore, PTHR1 overexpression or DKK1 knockdown reversed the suppressing effects of convallatoxin on OS cell proliferation, migration, and invasion, as well as the enhancing effect of convallatoxin on OS cell osteogenic differentiation. Collectively, convallatoxin may repress the malignant progression of OS by blocking PTHR1 and Wnt/β-catenin pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.