Abstract

AbstractCoastal waters in the Labrador Sea are influenced by the seasonal input of meltwater from the Greenland ice sheet, which is predicted to more than double by the end of the century. Mechanisms controlling the offshore export of meltwater can have a significant effect on stratification and vertical stability in the Labrador Sea, being particularly important if the meltwater is transported toward the interior of the basin where winter convection occurs. Here we use a high‐resolution ocean model to show that coastal upwelling winds play a critical role transporting the meltwater offshore to about 150 km from the coast, where increased eddy activity and mean circulation can then transport the meltwater farther offshore. While meltwater discharged from West Greenland is either transported to Baffin Bay or circumnavigates the basin flowing mostly along isobaths, meltwater from East Greenland can reach the interior of the basin where it may influence stratification and winter convection whenever winds are anomalously upwelling favorable in late summer and early fall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call