Abstract

Melt area is one of the most reliably monitored variables associated with surface conditions over the full Greenland Ice Sheet (GrIS). Surface melt is also an important indicator of surface mass balance and has potential relevance to the ice sheet’s global sea level contribution. Melt events are known to be spatially heterogeneous and have varying time scales. To understand the forcing mechanisms, it is necessary to examine the relation between the existing conditions and melt area on the time scales that melt is observed. Here, the authors conduct a regression analysis of atmospheric reanalysis variables including sea level pressure, near-surface winds, and components of the surface energy budget with surface melt. The regression analysis finds spatial heterogeneity in the associated atmospheric circulation conditions. For basins in the southern GrIS, there is an association between melt area and high pressure located south of the Denmark Strait, which allows for southerly flow over the western half of the GrIS. Instantaneous surface melt over northern basins is also associated with low pressure over the central Arctic. Basins associated with persistent summer melt in the southern and western GrIS are associated with the presence of an enhanced cloud cover, a resulting decreased downwelling solar radiative flux, and an enhanced downwelling longwave radiative flux. This contrasts with basins to the north and east, where an increased downwelling solar radiative flux plays a more important role in the onset of a melt event. The analysis emphasizes the importance of daily variability in synoptic conditions and their preferred association with melt events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.