Abstract

Solar energy is a source of sustainable energy and its optimal use depends on the efficiency and reliability of PV systems. Dual active bridge converters are a solution to interface PV modules with the grid or high voltage requirement applications due to the high voltage-conversion-ratio and high efficiency provided by such a converter. The three main contributions of this work are: an extensive mathematical model of a DAB converter connected to a PV module including protection diodes, which is intended to design non-linear controllers, an explicit linearized version of the model, which is oriented to design traditional control systems; and a detailed and replicable application example of the model focused on maximizing the power extraction from a PV system. The modeling approach starts with the differential equations of the PV system; however, only the fundamental and average components of each signal is used to represent it. The control-oriented model is validated using a detailed circuital simulation. First, through the comparison of frequency and time diagrams of the proposed model and a detailed one; and then, through the simulation of the PV system in a realistic application case. PV voltage regulation and maximum power extraction are confirmed in simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.