Abstract
We present a control scheme that is able to find and stabilize an unstable chaotic regime in a system with a large number of interacting particles. This allows us to track a high dimensional chaotic attractor through a bifurcation where it loses its attractivity. Similar to classical delayed feedback control, the scheme is noninvasive, however only in an appropriately relaxed sense considering the chaotic regime as a statistical equilibrium displaying random fluctuations as a finite size effect. We demonstrate the control scheme for so-called chimera states, which are coherence-incoherence patterns in coupled oscillator systems. The control makes chimera states observable close to coherence, for small numbers of oscillators, and for random initial conditions.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have