Abstract
This paper shows how the pavement surface radiation properties can be used to control the thermal environment of 110 kV underground cables in order to increase their ampacity. It is assumed that the ampacity is additionally affected by the cable bedding size and an underground heating pipeline. Thanks to an experimental apparatus, some useful data were collected for the validation of two different finite element method based models that predict the effect of the pavement surface radiation properties on the cable ampacity. The first model corresponds to the experimental apparatus and actual indoor conditions, while the second one corresponds to the theoretical case and assumed outdoor conditions (taking into account the thermal effects of solar radiation, cable bedding size, and heating pipeline). This paper examines two possible cases of outdoor conditions, one corresponding to summer period (the most unfavorable ambient conditions) and another one corresponding to winter period (the most common winter conditions in Serbia). This proposed new method is based on the experimental data and generalized using the finite element method in COMSOL. It is found that the ampacity of the considered 110 kV cable line can be increased up to 25.4 % for the most unfavorable ambient conditions and up to 8 % for the most common winter conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.