Abstract

The molecule 2-nitro-9-(2,2,2-triphenylethylidene)fluorene (NTEF) was studied as a potential light-driven molecular motor. Absorption at 355 nm causes a reversible spatial reorientation of the angular distribution of the dibenzofulvene rotor moiety of NTEF when immobilized in a poly(methyl methacrylate) (PMMA) matrix adsorbed on a fused silica surface in air at room temperature. The photoreorientation dynamics was probed by polarized normal incidence cavity ringdown spectroscopy (NICRDS) when the matrix was irradiated by linearly polarized "drive" light. Polarized drive irradiation at 355 nm creates a "hole" in the angular distribution of the molecular transition dipoles. Changing the polarization of the drive beam refills the hole, creating a new hole. A stochastic model was fitted to the experimental hole burning measurements to obtain a photoreorientation quantum yield (Φ(reorient) = 0.014). The photoreorientation process appears to be driven by photoisomerization of the exocyclic dibenzofulvene double bond of NTEF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.