Abstract

AbstractStarch is a natural, biodegradable polymer that can be used to prepare hydrogels with various applications in food, pharmacy, medicine, agriculture, etc. In this study, a method of preparation using poly(methyl methacrylate) (PMMA) beads to control the porosity of starch hydrogels is proposed. The hydrogels are crosslinked with trisodium trimetaphosphate and dried in a vacuum oven. Results show that increasing the amount of PMMA beads result in higher porosity hydrogels ranging from ≈35% for hydrogels where no PMMA beads are used to ≈88% for hydrogels where the mass ratio of PMMA beads to starch is 10:1. Higher porosity hydrogels have a higher equilibrium water content and swelling degree, but lower mechanical properties. All hydrogels have a low solubility (<≈5%) and a high gel fraction (>≈90%) percentage. Upon degradation in α‐amylase at 37 °C, low porosity hydrogels (prepare with 0:1 and 1:10 PMMA beads:starch) degrade within 30 min, while high porosity hydrogels (prepare with 1:1 and 10:1 PMMA beads:starch) degrade within 3 weeks. The release of a dye that is incorporated into the hydrogel walls follows similar kinetics. Therefore, the use of PMMA beads is an efficient method to control starch hydrogel's porosity and properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.