Abstract

In the present paper, we describe a series of laboratory experiments on the friction between rigid indenters with different geometrical forms and an elastic sheet of elastomer as a function of the normal load. We show that the law of friction can be controlled by the shape of the surface profile. Since the formulation of the adhesive theory of friction by Bowden and Tabor, it is widely accepted and confirmed by experimental evidence that the friction force is roughly proportional to the real contact area. This means that producing surfaces with a desired dependence of the real contact area on the normal force will allow to “design the law of friction”. However, the real contact area in question is that during sliding and differs from that at the pure normal contact. Our experimental studies show that for indenters having a power law profile f(r) = cnrn with an index n < 1, the system exhibits a constant friction coefficient, which, however, is different for different values of n. This opens possibilities for creating surfaces with a predefined coefficient of friction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.