Abstract

A dust particle immersed in a glow-discharge plasma has long been known to have a charge that is negative, while the plasma is powered. However, in the afterglow, following the stopping of the plasma power, a large positive charge can collect on the particle, as was shown recently for particles in a cathodic sheath. While that outcome of positive charging in the afterglow may be common, an experimental discovery reported here reveals that the opposite outcome is also possible: a particle can develop a negative charge in the afterglow, if the plasma had previously been operated with a modulated power. Before stopping the plasma power off altogether, in a run with power modulated at a low duty cycle of 4.5 % , the particle’s residual charge was negative, but it was positive in a control run without modulation. This result points to a way of controlling the charge of dust particles in a decaying plasma, which can be useful for mitigating defects in semiconductor manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.