Abstract

HypothesisThe degree of polymerization of amphiphilic di-block co-polymers, which can be varied with ease in computer simulations, provides a means to control self-assembling di-block co-polymer coatings on hydrophilic substrates. SimulationsWe examine self-assembly of linear amphiphilic di-block co-polymers on hydrophilic surface via dissipative particle dynamics simulations. The system models a glucose based polysaccharide surface on which random co-polymers of styrene and n-butyl acrylate, as the hydrophobic block, and starch, as the hydrophilic block, forms a film. Such setups are common in e.g. hygiene, pharmaceutical, and paper product applications. FindingsVariation of the block length ratio (35 monomers in total) reveals that all examined compositions readily coat the substrate. However, strongly asymmetric block co-polymers with short hydrophobic segments are best in wetting the surface, whereas approximately symmetric composition leads to most stable films with highest internal order and well-defined internal stratification. At intermediate asymmetries, isolated hydrophobic domains form. We map the sensitivity and stability of the assembly response for a large variety of interaction parameters. The reported response persists for a wide polymer mixing interactions range, providing general means to tune surface coating films and their internal structure, including compartmentalization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call