Abstract
Interlayer rotational alignment in van der Waals (vdW) structures of two-dimensional (2D) materials couples strongly to electronic properties and, therefore, has significant technological implications. Nevertheless, controlling the rotation of an arbitrary 2D material flake remains a challenge in the development of rotation-tunable electronics, for the emerging field of twistronics. In this article, we reveal a general moiré-driven mechanism that governs the interlayer rotation. Controlling the moiré can therefore hold promise for controlling the interlayer rotation. We further demonstrate mismatch strain engineering as a useful tool to design the interlayer rotation via changing the energy landscape of moiré within a finite-sized region. The robustness and programmable nature of our approach arise from moiré symmetry, energetics, and mechanics. Our approach provides another possibility to the on-demand design of rotation-tunable electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.