Abstract
AbstractMost simple ailerons produce adverse yaw. However, with proper aileron placement and wing twist, an aileron can produce proverse or neutral yaw, eliminating the need for aileron-rudder mixing, differential aileron deflection or Frise ailerons. The relationship between wing planform, aileron placement and lift distribution is studied here for a special class of optimal lift distributions that minimise induced drag for a variety of design constraints. It is shown that a wing employing the elliptic lift distribution will always produce adverse yaw, independent of aileron design or operating condition. However, for wings employing other optimal lift distributions, the ailerons can be placed to produce proverse or neutral yaw. A numerical lifting-line algorithm is used to explore the impact of aileron design on a wide range of wing planforms and lift distributions. Results can be used in the early stages of design to correctly place ailerons with respect to desired roll-yaw coupling.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have