Abstract

The electrochemical reduction reaction of CO2 (CO2RR) is a promising avenue toward the renewable energy‐driven transformation of a greenhouse gas toward fuels and value‐added chemicals. While copper uniquely can catalyze this reaction to longer carbon chains, Cu‐based electrodes continue to face numerous challenges, including low selectivity toward desired products and poor stability. To unlock its potential for large‐scale industrial implementation, great interest is shown in tackling these challenges, primarily focusing on catalyst and electrode modifications and thereby leaving a research gap in the effects of operation conditions. Herein, back pressure application is introduced in CO2 electrolyzers at industrially relevant current densities (200 mA cm−2) in order to steer selectivity toward C2+ products. The back pressure adjusts CO2 availability at the electrode surface, with a high CO2 surface coverage achieved at ΔP = 130 mbar suppressing the competing hydrogen evolving reaction for 72 h and doubling of stable ethylene production duration. Faradaic efficiency of 60% for C2+ products and overall C2+ conversion efficiency of 19.8% are achieved with the easily implementable back pressure operation mode presented in this study. It is proven to be a promising tool for product selectivity control in future upscaled Cu‐based CO2 electrolysis cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.