Abstract

Drying and calendering are critical steps in the manufacture of electrodes for lithium‐ion battery that affect their mechanical and electrochemical properties. A 2D representative volume element (RVE) model, including active material and carbon binder domain particles of different shapes and sizes, is developed. The evolution of the RVE structure is simulated using the discrete element method, providing insight into changes in velocity, coordination number, porosity, pore size distribution, tortuosity, and stress. Based on this analysis, a three‐step drying scheme is proposed in accordance with the experimental drying results. In addition, the calendering process significantly improves the mechanical integrity and electronic conductivity of the electrode. Through simulations and experimental observations of changes in surface morphology and porosity, an optimal compression ratio of about 20% is determined for the electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.