Abstract
This study is a thorough evaluation of clay-based Layer-by-Layer (LbL) coatings intended to reduce the flammability of polymeric materials. Through a systematic variation of a baseline coating recipe, an ideal combination of the coating attributes that provides a rapidly developing coating with an optimum balance of flammability, mechanical, and physical attributes on a complex 3D porous substrate, polyurethane foam (PUF) was identified. Using a unique trilayer (TL) assembly approach, the coating growth was significantly accelerated by the polymer (poly(acrylic acid) (PAA)/branched polyethylenimine (BPEI)) concentration in the formulation. However, to significantly reduce flammability without compromising other performance attributes, the concentration of the nanoparticle fire retardant (nanoFR, clay) suspension was critical. This study has resulted in the most significant reduction in PUF flammability using LbL technology without compromising any of the mechanical or physical attributes of the PUF. More specifically, a reduction in the peak heat release rate (pHRR) and average heat release rate (aHRR) of 33% and 78%, respectively, has been achieved. This reduction in flammability is at least two times more effective than commercial fire retardants and other LbL FR coatings for PUF. The insights gained through this research are expected to accelerate the development of other LbL coatings regardless of the intended application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have