Abstract

The unique redox cycle of NiII(dtc)2, where dtc- is N,N-diethyldithiocarbamate, in acetonitrile displays 2e- redox chemistry upon oxidation from NiII(dtc)2 → [NiIV(dtc)3]+ but 1e- redox chemistry upon reduction from [NiIV(dtc)3]+ → NiIII(dtc)3 → NiII(dtc)2. The underlying reasons for this cycle lie in the structural changes that occur between four-coordinate NiII(dtc)2 and six-coordinate [NiIV(dtc)3]+. Cyclic voltammetry (CV) experiments show that these 1e- and 2e- pathways can be controlled by the addition of pyridine-based ligands (L) to the electrolyte solution. Specifically, the addition of these ligands resulted in a 1e- ligand-coupled electron transfer (LCET) redox wave, which produced a mixture of pyridine-bound Ni(III) complexes, [NiIII(dtc)2(L)]+, and [NiIII(dtc)2(L)2]+. Although the complexes could not be isolated, electron paramagnetic resonance (EPR) measurements using a chemical oxidant in the presence of 4-methoxypyridine confirmed the formation of trans-[NiIII(dtc)2(L)2]+. Density functional theory calculations were also used to support the formation of pyridine coordinated Ni(III) complexes through structural optimization and calculation of EPR parameters. The reversibility of the LCET process was found to be dependent on both the basicity of the pyridine ligand and the scan rate of the CV experiment. For strongly basic pyridines (e.g., 4-methoxypyridine) and/or fast scan rates, high reversibility was achieved, allowing [NiIII(dtc)2(L)x]+ to be reduced directly back to NiII(dtc)2 + xL. For weakly basic pyridines (e.g., 3-bromopyridine) and/or slow scan rates, [NiIII(dtc)2(L)x]+ decayed irreversibly to form [NiIV(dtc)3]+. Detailed kinetics studies using CV reveal that [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ decay by parallel pathways due to a small equilibrium between the two species. The rate constants for ligand dissociation ([NiIII(dtc)2(L)2]+ → [NiIII(dtc)2(L)]+ + L) along with decomposition of [NiIII(dtc)2(L)]+ and [NiIII(dtc)2(L)2]+ species were found to increase with the electron-withdrawing character of the pyridine ligand, indicating pyridine dissociation is likely the rate-limiting step for decomposition of these complexes. These studies establish a general trend for kinetically trapping 1e- intermediates along a 2e- oxidation path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.