Abstract

Abstract Magnetoelectric coupling in multiferroic materials opens new routes to control the propagation of light. The new effects arise due to dynamic magnetoelectric susceptibility that cross-couples the electric and magnetic fields of light and modifies the solutions of Maxwell equations in media. In this paper, two major effects will be considered in detail: optical activity and asymmetric propagation. In case of optical activity the polarization plane of the input radiation rotates by an angle proportional to the magnetoelectric susceptibility. The asymmetric propagation is a counter-intuitive phenomenon and it represents different transmission coefficients for forward and backward directions. Both effects are especially strong close to resonance frequencies of electromagnons, i. e. excitations in multiferroic materials that reveal simultaneous electric and magnetic character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.