Abstract

BackgroundMeat is considered as a major source of polyunsaturated fatty acid (PUFA) which is essential for humans, therefore its lipid level and fatty acid composition have drawn great attention. As no clinical sign can be found in chicks subclinically infected by Clostridium perfringens (CP), the meat may be purchased and eaten. The objective of the present study was to determine whether Lactobacillus johnsonii (LJ) can control the CP-caused impact on growth, lipid levels, fatty acid composition and other flavor or nutritional quality in the meat.Methods480 one-day-old chicks were divided into four groups and fed with basal diet (control and CP group). Supplemented with 1 × 105 (L-LJ) and 1 × 106 (H-LJ) colony-forming unit (cfu), CP diet was fed for 42 days. From day 19 to 22, birds of CP and LJ groups were administered with CP twice per day and the control was administered with liver broth.ResultsLJ-treated chickens were free from negative influences on growth performance and significant decrease of abdominal fat deposit., LJ inhibited CP-caused shearing force and drip loss increase and pH 40 min and 24 h decrease after sacrifice. In addition, LJ exhibited a positive effect on muscle lipid peroxidation by significantly increasing SOD, CAT and GSH-Px activity and decreasing MDA level. Besides, LJ attenuated the decrease of intramuscular fat, total cholesterol and triglyceride contents caused by CP infection. However, levels of total protein and most of amino acids were not changed. CP infection decreased C18:3n-3 (α-LA), C20:4n-6, C20:5n-3(EPA), C22:4n-6, C22:5n-3, C22:6n-3(DHA), total PUFA, n-3 PUFA and PUFA:SFA ratio and increased C14:0, total SFA and n-6:n-3 ratio. LJ was found to protect the muscle from these changes. Meanwhile, the 28-day gut permeability level was higher in CP group.ConclusionsThese findings suggest that CP may affect the growth performance of chicks and negatively influence lipid content and fatty acid composition in chicken meat. Meanwhile, LJ treatment may be effective in controlling these changes by reducing the increased gut permeability caused by CP subclinical infection.

Highlights

  • Meat is considered as a major source of polyunsaturated fatty acid (PUFA) which is essential for humans, its lipid level and fatty acid composition have drawn great attention

  • Clostridium perfringens (CP)-induced necrotic enteritis has been found to significantly lower high-density lipoprotein cholesterol (HDL-C) in the serum and inhibit mRNA expression of peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyl transferase1 (CPT-1) in the liver of broilers, which may cause an impact on the body lipid metabolism [12]

  • feed conversion ratio (FCR) was significantly lower and final weight and DWG were significantly higher (P < 0.05) in H-Lactobacillus johnsonii (LJ) group when compared with CP group

Read more

Summary

Introduction

Meat is considered as a major source of polyunsaturated fatty acid (PUFA) which is essential for humans, its lipid level and fatty acid composition have drawn great attention. As no clinical sign can be found in chicks subclinically infected by Clostridium perfringens (CP), the meat may be purchased and eaten. The objective of the present study was to determine whether Lactobacillus johnsonii (LJ) can control the CP-caused impact on growth, lipid levels, fatty acid composition and other flavor or nutritional quality in the meat. The subclinical form of CP infection damages the intestinal tract and presents as poor performance and reduced feed conversion without mortality. The present study aimed to evaluate the CP-caused impact on growth performance, lipid content, fatty acid composition and other flavor or nutritional substances in the meat. As the application of probiotics is becoming a common method to prevent CP in post-antibiotic era [13, 14], the present study aimed to determine whether the dietary supplemented probiotic, Lactobacillus johnsonii (LJ), can control these potential changes. Lactobacillus johnsonii BS15 (CCTCC M2013663) is isolated from homemade yogurt collected from the Hongyuan Prairie, Aba Autonomous Prefecture, China, which can prevent non-alcoholic fatty liver disease by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice [15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call