Abstract
During ultrafast laser pulse propagation in dielectrics, the nonlinear generation of new spatial frequencies can be deleterious to reach high intensities and to generate uniform plasma channels. In this context, diffraction-free Bessel beams have attracted major recent interest because of their enhanced stability when compared to conventional Gaussian beams. However, Bessel beams can still suffer from significant modulation instability arising from noise-induced nonlinear four-wave mixing (FWM). In this Letter we report control of the nonlinear instability growth by shaping the longitudinal intensity profile of the incident field. Our results show that tailored longitudinal intensity shaping of a nondiffracting Bessel beam can strongly reduce FWM-induced oscillations and stabilize nonlinear propagation at ablation-level intensities.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have