Abstract

Over the past decade, an intense effort has brought together theoretical and laboratory tools for controlling molecular motion with tailored laser pulses. Various means for designing laser pulses are available, including a new procedure, discussed here, for carrying out the effort when there is uncertainty in the Hamiltonian. Presently, the most viable general procedure for achieving successful control over quantum systems in the laboratory is through the use of closed loop learning algorithms. The logic behind the operation of such algorithms is discussed, along with a summary of several recent laboratory achievements exploiting closed loop learning to control quantum and nonlinear optical phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.