Abstract
Aqueous suspensions of aluminum nitride (AlN) powders have been prepared in the presence of different surface-active agents, namely, H 3PO 4 and an anionic surfactant, to avoid the hydrolysis of AlN powders and to enhance dispersion. The most determinant parameters to the hydrolysis process (ΔpH and time of contact) and the stabilization of AlN particles in water (surface crystallinity, surface chemical modification, and surface ionic charge) were seen to be strongly dependent on the acidic agent. The H 3PO 4 treatment was effective against hydrolysis of AlN due to the formation of a phosphate-based protection layer on the particles' surface, and, although it keeps the pH of the suspension below 4, it does not guarantee a good dispersion. The individual adsorption of the anionic surfactant at the surface of AlN particles suspensions did not completely suppress the hydrolysis but it did enhance the degree of dispersion. A proper combination of the two types of surface-active agents enabled the preparation of AlN aqueous suspensions of relatively low viscosity and high AlN concentration, which can be a good starting point for aqueous-based colloidal shaping techniques or for freeze granulation or spray drying to obtain suitable granulate powder characteristics for dry-pressing technologies. An adsorption mechanism of the surface-active agents onto the particles' surface is proposed and supported by NMR and FT-IR analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.