Abstract

High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials.Graphical Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In2Se3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

Highlights

  • In the past decade, one-dimensional (1D) nanostructure tubes, wires, rods, and belts have become the focal point of the worldwide research in nanotechnology due to their high performance and surface-to-volume ratios, intrinsically associated with low dimensionality, which may lead to unique applications in the various nanoscale device [1, 2]

  • The SiO2/Si(100) coated with a 2.0-nm-thick gold film is annealed by rapid thermal annealing (RTA), at 550 °C, the substrate is loaded into the growth furnace tube to grow In2Se3 nanowires with a flow rate of argon gas at 25 sccm and pressure of 1 Torr

  • The bright nanoparticle on the top of the NW can be observed from the inset in Fig. 1b, c, which indicates that the In2Se3 NWs are grown through AuInx nanoparticles via the VLS mechanism

Read more

Summary

Introduction

One-dimensional (1D) nanostructure tubes, wires, rods, and belts have become the focal point of the worldwide research in nanotechnology due to their high performance and surface-to-volume ratios, intrinsically associated with low dimensionality, which may lead to unique applications in the various nanoscale device [1, 2]. Lower precursor and growth temperature are chosen to reduce the diameter of nanowires and prevent the VS-grown In2Se3 byproducts.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call