Abstract

The energy exchange between photons and electrons has been investigated theoretically by ab initio approach based on time-dependent density functional theory. Using diamond as a concrete example, three types of resonance and cancellation in the transfer of energy are theoretically observed, that allows one to gain a useful independent insight into the interaction processes of attosecond light pulses with matter. Our results demonstrate the linearity in energy transfer from intense attosecond light pulses to solids, in contrast to the nonlinearity in energy transfer from intense femtosecond light pulses to solids as expected from the conventional point of view, opening new perspectives for attoscience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call