Abstract

Quantum energy science is rapidly emerging as a domain interested in the generation, transfer and storage of energy at the quantum level. In particular, quantum batteries have the scope to exploit the wonders of quantum mechanics in order to boost their performance as compared to their electrochemical equivalents. Here we show how an exponential enhancement in stored energy can be achieved with a quantum battery thanks to a two-photon charging protocol. We consider theoretically a quantum battery modelled as a quantum harmonic oscillator, which when driven by a quadratic field (manifested by a Gaussian pulse envelope) gives rise to squeezing of the battery. This quantum squeezing ensures that the population of the battery is driven exponentially up its bosonic energy ladder. Our results demonstrate a plausible mechanism for quickly storing a vast amount of energy in a quantum object defined by continuous variables, which may be explored experimentally in a variety of quantum optical platforms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call