Abstract

Grassland is not only an important part of the terrestrial ecosystem with multiple ecological functions, but also an important base for Chinese herdsmen to produce and live. However, the occurrence and spread of rodent infestation reduces the biodiversity and productivity of grassland ecosystems. It also severely threatens human life, health, and biosecurity through disease transmission. In this study, we explored the ability of the nanocomposite sterilant ND-1 to control grassland rodent populations. Semi-closed experimental and control plots were established in the desert area of Alashan, Inner Mongolia, China. In spring 2018, the nanocomposite sterile ND-1 (Nongda-1) was introduced once, and the control effect of ND-1 on the growth of the wild population of midday gerbils was measured for two years. We show that ND-1 significantly reduced the population of midday gerbils in the experimental area, with a negative population growth rate. In addition, in the second year, the ratio of female midday gerbils to sub-adults in the experimental area was significantly lower than that in the control area, which resulted in a significant difference in the sex ratio of midday gerbils. There were significantly fewer females than males, and the population growth of midday gerbils in the experimental area was significantly inhibited. ND-1 had no significant effect on the home range of midday gerbils, and sterile individuals continued to occupy the home range and consume resources. Therefore, ND-1 reduced the number of female midday gerbils during the breeding period and the sex ratio and population density and altered the age structure of the wild population. Additionally, competition between sterile and normal individuals had a significant control effect on the growth of wild populations. Our studies demonstrate the significance of ND-1 in the sustainable control of grassland rodent pests, with the potential for limiting grassland rodent damage in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.