Abstract

Producing value-added light aromatics (BTEX) from solid waste streams holds excellent promise for resource recovery. Here we present a thermochemical conversion approach that enhanced BTEX production by coupling CO2 atmosphere and Fe-modified HZSM-5 zeolite to facilitate the Diels-Alder reactions in catalytic pyrolysis of sawdust and polypropylene. The Diels-Alder reactions between sawdust-derived furans and polypropylene-derived olefins could be controlled by tuning CO2 concentration and Fe loading amount. Sufficient CO2 (≥50%) with moderate Fe loading (10 wt%) were observed to produce more BTEX and fewer heavy fractions (C9+aromatics). To deepen the mechanistic understanding, quantification of polycyclic aromatic hydrocarbons (PAHs) and catalyst coke was further conducted. The co-use of CO2 atmosphere and Fe modification suppressed the appearance of low-, medium-, and high-membered ring PAHs by over 40%, decreased pyrolysis oil toxicity from 42.1 to 12.8 μg/goil TEQ, and transformed coke from "hard" to "soft". Based on the characterization of CO2 adsorption behavior, it was deduced that the introduced CO2 was activated by loaded Fe and reacted in situ with H2 generated during aromatization to expedite H-transfer. Meanwhile, BTEX recondensation was prevented through the Boudouard reactions of CO2 and water-gas reactions between the resulting water and carbon deposits. These synergistically enhanced the production of BTEX and suppressed the formation of heavy species, including PAHs and catalyst coke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.