Abstract
Hierarchical flower-like spheres and self-assembled chains of copper sulfide have been synthesized by a facile microwave irradiation. The as-obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy. The SEM and TEM results showed that three-dimensional (3D) flower-like CuS spheres are constructed by a number of two-dimensional (2D) nanosheets as primary building units, whereas the one-dimensional (1D) hierarchical chains are formed by the oriented attachment of the 3D flower-like spheres of CuS. The influences of the additive EDTA, concentration of reactants, microwave power, and reaction time on final morphology and assembled structure of the products were systematically investigated. On the basis of our experimental results, a phenomenological elucidation of the mechanism for the growth of the CuS architectures has been presented, and the driving force for the self-assembly of the nanoplates can be attributed to interfacial tension and the interaction between the hydrophilic surfaces of CuS nanoplates. EDTA acts as both a chelating reagent and a surface capping agent in the synthesis process. Moreover, the optical property of the flower-like CuS microspheres was measured by UV–vis absorption spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.