Abstract

The urchin-like Bi 2S 3 nanostructures have been grown by a facile environmentally friendly hydrothermal method. X-ray diffraction (XRD) and Raman spectrum demonstrate that the obtained samples are composed of pure orthorhombic phase Bi 2S 3. Scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) images reveal that it is produced as uniform urchin-like pattern with spherical symmetry. High-resolution (HR) TEM and selected-area electron diffraction (SAED) demonstrate that the nanowires which grow radially from the center of the urchin-like nanostructures toward all directions are single-crystalline and grow along the [001]. It is found that the reaction time, reaction temperature and thiourea (Tu) play key roles for the formation of urchin-like Bi 2S 3 nanostructures. The formation mechanism is ascribed to self-assembly and the intrinsic splitting character of the Bi 2S 3 structure. The urchin-like Bi 2S 3 composed of porous nanorods, solid nanorods and nanowires could be found potential application in optical, catalysts and sensor devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.