Abstract

With the use of two classes of reversible addition-fragmentation chain-transfer agents—dithiobenzoates and trithiocarbonates—multiblock copolymers based on styrene and n-butyl acrylate, which are the best-studied monomers in these processes, are synthesized. It is shown that the polymers containing dithiobenzoate and trithiocarbonate groups are highly efficient for the synthesis of block copolymers, which is independent of the number of stages at which the polymeric RAFT agents are used in polymerization: In all cases, the polymeric RAFT agent is fully consumed in the polymerization of the “alien” monomer. The mechanism governing chain formation during the synthesis of multiblock copolymers, that is, the character of monomer insertion into the polymer chain, via one or both ends, is studied. It is found that the order of monomer loading determines the ratio of chains growing through one or two ends. The thermal stability of amphiphilic multiblock copolymers, their solubility in various solvents, and self-organizing ability are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call