Abstract

The homopolymerization of vinyl acetate mediated by dithiobenzoates and trithiocarbonates as reversible addition-fragmentation chain-transfer agents is studied. The polymerization of vinyl acetate is characterized by some distinct features: (i) a substantial role of chain-termination reactions involving radical intermediates in the kinetics of the process that increases as the concentrations of the reversible additionfragmentation chain-transfer agent and the initiator increase and as temperature decreases and (ii) the occurrence of side reactions of chain transfer to monomers and polymers. The role of these reactions significantly increases with conversion of the monomer. Thus, in order to prepare a narrowly dispersed PVA via the reversible addition-fragmentation chain-transfer mechanism, the process should be conducted to small conversions (15–20%) at moderately high temperatures (80°C) and at a small molar excess of the reversible addition-fragmentation chain-transfer agent with respect to the initiator. A technique for the synthesis of block copolymers based on PVA and poly(n-butyl acrylate) via the reversible addition-fragmentation chain-transfer mechanism is developed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.