Abstract

Non-neutral layered crystals, another group of two-dimensional (2D) materials that lack a well-defined van der Waals (vdWs) gap, are those that form strong chemical bonds in-plane but display weak out-of-plane electrostatic interactions, exhibiting intriguing properties for the bulk counterpart. However, investigation of the properties of their atomically thin counterpart are very rare presumably due to the absence of efficient ways to achieve large-area high-quality 2D crystals. Here, high-mobility atomically thin Bi2O2Se, a typical non-neutral layered crystal without a standard vdWs gap, was synthesized via a facial chemical vapor deposition (CVD) method, showing excellent controllability for thickness, domain size, nucleation site, and crystal-phase evolution. Atomically thin, large single crystals of Bi2O2Se with lateral size up to ∼200 μm and thickness down to a bilayer were obtained. Moreover, optical and electrical properties of the CVD-grown 2D Bi2O2Se crystals were investigated, displaying a size-tunable band gap upon thinning and an ultrahigh Hall mobility of >20000 cm2 V-1 s-1 at 2 K. Our results on the high-mobility 2D Bi2O2Se semiconductor may activate the synthesis and related fundamental research of other non-neutral 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call