Abstract
Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.