Abstract

Carbohydrate conjugate rod-coil amphiphiles were synthesized and their self-assembling behavior in aqueous solution was investigated. These amphiphiles were observed to self-assemble into supramolecular structures that differ significantly depending on the molecular architecture. The rod-coil amphiphiles based on a short coil (1) self-assemble into a vesicular structure, while the amphiphiles with a long coil (2) show a spherical micellar structure. In contrast, 3, based on a twin-rod segment, was observed to aggregate into cylindrical micelles with twice the diameter of molecular length scale. As a means to determine the binding activity to protein receptors of these supramolecular objects, hemagglutination inhibition assay was performed. The experiments showed that the supramolecular architecture has a significant effect on the binding activity. In addition, incubation experiments with Escherichia coli showed that mannose-coated objects specifically bind to the bacterial pili of the ORN 178 strain. These results demonstrate that precise control of the nano-objects in shape and size by molecular design can provide control of the biological activities of the supramolecular materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.