Abstract

• The self-assembled plasmonic nano-enabled photonic crystals (PCs) have been studied as promising platforms to develop next-generation photonic and opto-electronic devices. • In this review, we attempt to describe the fundamentals of self-assembled colloidal plasmonic nanostructures and various applications of such devices. • Different important aspects, such as interaction between metal NPs (MNPs) and non-metal 3-D crystals, effect of NPs on the spectral properties of materials, the mechanism of plasmonic based PCs, and related challenges and their possible solutions have been demonstrated crucially. • The advancements in the self-assembly based plasmonic PCs and their applications are discussed carefully. • We believe that nano-enabled self-assembled plasmonic crystals are better candidates of nanostructures to advance photonic technologies with reduced formfactor and high performance. The self-assembled plasmonic nano-enabled photonic crystals (PCs)have been studied as promising platforms to develop next-generation photonic and opto-electronic devices. In this review, we attempt to describe the fundamentals of self-assembled colloidal plasmonic nanostructures and various applications of such devices. Different important aspects, such as interaction between metal NPs (MNPs) and non-metal 3-D crystals, effect of NPs on the spectral properties of materials, the mechanism of plasmonic based PCs, and related challenges and their possible solutions have been demonstrated crucially. The advancements in the self-assembly based plasmonic PCs and their applications are discussed carefully. We believe that nano-enabled self-assembled plasmonic crystals are better candidates of nanostructures to advance photonic technologies with reduced form factor and high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.