Abstract

The selective reaction of one part of a bifunctional molecule is a fundamental challenge in heterogeneous catalysis and for many processes including the conversion of biomass-derived intermediates. Selective hydrogenation of unsaturated epoxides to saturated epoxides is particularly difficult given the reactivity of the strained epoxide ring, and traditional platinum group catalysts show low selectivities. We describe the preparation of highly selective Pd catalysts involving the deposition of n-alkanethiol self-assembled monolayer (SAM) coatings. These coatings improve the selectivity of 1-epoxybutane formation from 1-epoxy-3-butene on palladium catalysts from 11 to 94% at equivalent reaction conditions and conversions. Although sulphur species are generally considered to be indiscriminate catalyst poisons, the reaction rate to the desired product on a catalyst coated with a thiol was 40% of the rate on an uncoated catalyst. Interestingly the activity decreased for less-ordered SAMs with shorter chains. The behaviour of SAM-coated catalysts was compared with catalysts where surface sites were modified by carbon monoxide, hydrocarbons or sulphur atoms. The results suggest that the SAMs restrict sulphur coverage to enhance selectivity without significantly poisoning the activity of the desired reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.