Abstract

Modification of a self setting bone cement with biodegradable microspheres to achieve controlled local release of antibiotics without compromising mechanical properties was investigated. Different biodegradable microsphere batches were prepared from poly(lactic-co-glycolic acid) (PLGA) using a spray-drying technique to encapsulate gentamicin crobefate varying PLGA composition and drug loading. Microsphere properties such as surface morphology, particle size and antibiotic drug release profiles were characterized. Microspheres were mixed with an apatitic calcium phosphate bone cement to generate an antibiotic drug delivery system for treatment of bone defects. All batches of cement/microsphere composites showed an unchanged compressive strength of 60MPa and no increase in setting time. Antibiotic release increased with increasing drug loading of the microspheres up to 30% (w/w). Drug burst of gentamicin crobefate in the microspheres was abolished in cement/microsphere composites yielding nearly zero order release profiles. Modification of calcium phosphate cements using biodegradable microspheres proved to be an efficient drug delivery system allowing a broad range of 10–30% drug loading with uncompromised mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.