Abstract

In this research, a photocurable composite based on tetracalcuim phosphate ceramic and, hydroxyethyl methacrylate-modified poly(acrylic-maleic acid) was developed and studied as a potential drug delivery system for bone defects. Different concentrations (5, 10 and 20 wt. %) of a non-steroidal anti-inflammatory drug, Indomethacin, were loaded on to the composite and its release behavior was investigated in phosphate buffered solution during 504 h. The obtained release data were fitted by both power law (Peppas) and Weibull equations. The composites were also characterized after different soaking periods using X-ray diffractometry (XRD), scanning electron microscopy (SEM) and Fourier transforming infrared spectroscopy. The results of XRD and SEM analyses revealed the formation of nanosized needle/flake-like apatite crystals on the composites surfaces; however, better apatite formation was observed for the composites loaded with higher amounts of Indomethacin. The morphological observations and quantitative estimations revealed that the loaded composites were gradually degraded in the phosphate-buffered saline. Moreover, a controlled release of Indomethacin was found from the composites in which a higher drug concentration led to a more drug level as well as sustained release profile. In drug release modeling, better regression coefficient was obtained from the Weibull equation, compared to the power law, meaning that the Weibull equation suggests a better description of the indomethacin release from the composites during the whole period of the test. In conclusion, the photocurable composite with apatite formation ability can be successfully used for the controlled release of indomethacin as an anti-inflammatory drug in bone defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call