Abstract

ObjectivesOsteoporosis is one of the most common bone diseases in the world and results from an imbalance of bone cell functions. In the process of guided bone regeneration, osteoporosis weakens the bonding strength between scaffold and bone. Naringin is evidenced to be effective for the treatment of osteoporosis and bone resorption and the aim was to explore methods and benefits of its incorporation. MethodsIn this study, naringin was incorporated in the electrospun nanoscaffold containing poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol)-block-poly(ɛ-caprolactone) (PEG-b-PCL). ResultsThe nanoscaffold demonstrated unchanged chemical structure, improved hydrophilicity, thinner and more uniform nanofibers by Fourier-transform infrared spectroscopy, contact angle measurement and scanning electron microscopy. The nanoscaffold also showed faster degradation rate and controlled-release of naringin. Osteoblast-nanoscaffold interactions were studied by the evaluation of adhesion, proliferation, differentiation of MC3T3-E1 osteoblasts and mineralization of ECM on the nanoscaffolds. Meanwhile, the response of osteoclasts to nanoscaffolds was evaluated in a mouse calvarial critical size defect organ culture model. The osteoclasts around the bone defect were shown by tartrate resistant acid phosphatase staining. SignificanceThe results demonstrated that controlled-release naringin nanoscaffolds supported greater osteoblast adhesion, proliferation, differentiation, and mineralization and suppressed osteoclast formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call