Abstract

We demonstrate, experimentally and theoretically, controlled loading of an exciton-polariton vortex chain into a 1D array of trapping potentials. Switching between two types of vortex chains, with topological charges of the same or alternating signs, is achieved by appropriately shaping an off-resonant pump beam that drives the system to the regime of bosonic condensation. In analogy to spin chains, these vortex sequences realize either a "ferromagnetic" or an "antiferromagnetic" order, whereby the role of spin is played by the orbital angular momentum. The ferromagnetic ordering of vortices is associated with the formation of a persistent chiral current. Our results pave the way for the controlled creation of nontrivial distributions of orbital angular momentum and topological order in a periodic exciton-polariton system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.