Abstract
Diagnosis of cancer by chemotherapy treatment, severe side effects caused by high dosages of cancer drugs include non-controlled cytotoxicity to bone marrow cells and immune cells. To overcome, we have synthesized nanoparticles with controlled sized hydroxyapatite (nHAp) materials doped and co-doped with silver and iron by co-precipitation, yielding materials that can treat both the infections and malignant tumors with non-cytotoxic nature to normal cells. Spherical and rod like morphologies were observed for the samples with higher Ag+ doping concentrations with average size of 50 ± 5 nm and (75 × 22) ± 5 nm2, whereas higher Ag+/Fe2+ co-doping concentrations yielded samples with spherical, rod-like, and flake-like structures. For samples nHAp and Ag+-nHAp samples were diamagnetic, whereas the Fe2+-nHAp and Ag+/Fe2+ co-doped samples were superparamagnetic. The in vitro biological toxicity study revealed that the Ag+/Fe2+-nHAp nanoparticles are effective for targeting to kill cancerous cells, for example, human cervical cancer (HeLa) cells efficiently while they are non-toxic to normal cells. Applying these nanoparticles for drug delivery system, 5-fluorouracil was loaded in the nanoparticles and studied its release kinetics. In the case of Ag+/Fe2+co-doped nHAp samples, a pulsatile drug release profile was observed, which the drug was released for about a week on varying the Ag+ and Fe2+ concentrations. The 5-fluorouracil release kinetics was well fitted by the first-order model with diffusion. Thus, nHAps co-doped with Ag+/Fe2+ material have the potential to lag the time on delivering the drug at site-specific could be with an application in biomedicine such as to treat malignant tumor without any bacterial side effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.