Abstract
A very low incidence of acute kidney injury (AKI) has been observed in COVID-19 patients purposefully treated with early pressure support ventilation (PSV) compared to those receiving mainly controlled ventilation. The prevention of subdiaphragmatic venous congestion through limited fluid intake and the lowering of intrathoracic pressure is a possible and attractive explanation for this observed phenomenon. Both venous congestion, or "venous bagging", and a positive fluid balance correlate with the occurrence of AKI. The impact of PSV on venous return, in addition to the effects of limiting intravenous fluids, may, at least in part, explain this even more clearly when there is no primary kidney disease or the presence of nephrotoxins. Optimizing the patient-ventilator interaction in PSV is challenging, in part because of the need for the ongoing titration of sedatives and opioids. The known benefits include improved ventilation/perfusion matching and reduced ventilator time. Furthermore, conservative fluid management positively influences cognitive and psychiatric morbidities in ICU patients and survivors. Here, it is hypothesized that cranial lymphatic congestion in relation to a more positive intrathoracic pressure, i.e., in patients predominantly treated with controlled mechanical ventilation (CMV), is a contributing risk factor for ICU delirium. No studies have addressed the question of how PSV can limit AKI, nor are there studies providing high-level evidence relating controlled mechanical ventilation to AKI. For this perspective article, we discuss studies in the literature demonstrating the effects of venous congestion leading to AKI. We aim to shed light on early PSV as a preventive measure, especially for the development of AKI and ICU delirium and emphasize the need for further research in this domain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have