Abstract

We developed a simple method of synthesizing noncovalently linked hybrids of PbSe quantum dots (QDs) and single-walled carbon nanotubes (SWNTs). The PbSe QDs grow around the SWNTs without any linker molecule or chemical modification of the SWNTs. We are able to control the size and shape of the QDs attached to the SWNTs by varying the synthesis conditions and elucidate the three-dimensional (3D) morphology and atomic structure of the half-ring-shaped PbSe QDs bonded to the SWNTs using scanning transmission electron microscopy (STEM) tomography and high-resolution transmission electron microscopy (HRTEM). The PbSe QDs not only assemble on the SWNT bundles, but they actually grow around them. The growth of the PbSe QDs around SWNT sidewalls is favored over the growth of spherical particles in solution, probably due to dipole stabilization by the large π-electron system of the SWNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.