Abstract

A frequency-variable single-mode microwave (MW) reactor system was designed and applied for selective heating of a palladium dispersed layer deposited on a porous alumina tube. This MW reactor system automatically detects the suitable resonance frequency and provides the optimum MW irradiation conditions in the cylindrical cavity via a power feedback loop. The temperature program ensured simultaneous MW power response and fast heating of the palladium dispersed layer of the reactor tube. The high-power MW amplifier was oscillated using a semiconductor instead of a conventional magnetron-type oscillator. The semiconductor device provides a narrower distribution of frequencies, resulting in an intense and sharp heating zone along the tubular reactor. High reaction conversion with efficient energy use was demonstrated via continuous oxidation of ethylene by focusing the electric field along the palladium dispersed reactor tube.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.