Abstract

We propose a method to dynamically generate and control the flow of spin-entangled electrons, each belonging to a spin singlet, by means of adiabatic quantum pumping. The pumping cycle functions by periodic time variation of localized two-body interactions. We develop a generalized approach to adiabatic quantum pumping as traditional methods based on a scattering matrix in one dimension cannot be applied here. We specifically compute the flow of spin-entangled electrons within a Hubbard-like model of quantum dots, discuss possible implementations, and identify parameters that can be used to control the singlet flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call