Abstract

Porous carbon materials have been regarded as a promising alternative to activated carbon for desalination via capacitive deionization (CDI) due to refined architectures and functionalities. However, it is still challenging to obtain a controlled hierarchical pore structure and considerable nitrogen-doped content by convenient method. Herein, nitrogen-doped hierarchical porous carbon foams (NHCFs) with different microstructural features, nitrogen contents and nitrogen species were successfully fabricated via a stepwise pyrolysis carbonization strategy using easily available melamine foam. Due to the synergistic effect of hierarchical porous structure and doped nitrogen, the optimized NHCF sample carbonized at 800℃ (NHCF-800) exhibited a maximum desalination capacity of 30.1 mg g−1 at the optimal operating parameters (500 mg/L NaCl solution, 1.2 V) and an excellent regeneration performance after 50 continuous adsorption–desorption cycles. Furthermore, density functional theory (DFT) was also conducted to elaborate the disparity of sodium adsorption energy among the nitrogen species for in-depth understanding, and it mainly benefits from the ascendency of the pyrrolic-N and pyridinic-N over the graphitic-N dopant. This work paves the way of rational regulation of nitrogen-doped process and hierarchical porous structure carbon as CDI electrode materials for desalination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call