Abstract
Nanocarriers can aid therapeutic agent administration to the lung, but controlling drug delivery from these systems after deposition in the airways can be problematic. The aim of this study was to evaluate if chemically mediated shell permeabilisation could help manipulate the rate and extent of nanocarrier drug release. Rifampicin was loaded into lipid shell (loading efficiency 41.0±11.4%, size 50nm) and polymer shell nanocarriers (loading efficiency 25.9±2.3%, size 250nm). The drug release at pH 7.4 (lung epithelial pH) and 4.2 (macrophage endosomal pH) with and without the chemical permeabilisers (Pluronic L62D − lipid nanocarriers; H+- polymer nanocarriers) was then tested. At pH 7.4 the presence of the permeabilisers increased nanocarrier drug release rate (from 3.2μg/h to 6.8μg/h for lipid shell nanocarriers, 2.3μg/h to 3.4μg/h for polymer shell nanocarriers) and drug release extent (from 50% to 80% for lipid shell nanocarriers, from 45% to 76% for polymer shell nanocarriers). These effects were accompanied by lipid nanocarrier distension (from 50 to 240nm) and polymer shell hydrolysis. At pH 4.2 the polymer nanocarriers did not respond to the permeabiliser, but the lipid nanocarrier maintained a robust drug release enhancement response and hence they demonstrated that the manipulation of controlled drug release from lung-targeted nanocarriers was possible through chemically mediated shell permeabilisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.