Abstract
The rate and extent of drug release from most controlled release systems are influenced by the pH of the dissolution medium for drugs with pH-dependent solubility. This dependency of drug release on pH may lead to additional inter- and intra-subject variability in drug absorption. In the present study, a pH-independent controlled release matrix system for acidic drugs was designed by incorporating release-modifiers in the formulation. Controlled release matrix tablets were prepared by compression of divalproex sodium, Methocel K4M and Eudragit E 100 or Fujicalin as the release-modifier. For formulations without any release-modifier, the extent and rate of drug release at pH 6.8 was much higher than that at pH 1.0. Formulations containing Eudragit E 100 provided drug release that was essentially independent of pH. This was achieved because Eudragit E 100 significantly increased the drug release in acidic medium and slightly decreased the release rate at higher pH. The increased release in the acidic medium can be attributed to the elevation of the micro-environmental pH in the swollen polymer gel layer. Formulations containing Fujicalin were less effective than those containing Eudragit E 100. This was attributed to the relative inability to elevate the pH and shorter residence time of Fujicalin in the matrix relative to Eudragit E 100.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.