Abstract

Nitinol (NiTi shape-memory alloy) is an interesting candidate in various medical applications like dental, orthopedic, and cardiovascular devices, owing to its unique mechanical behaviors and proper biocompatibility. The aim of this work is the local controlled delivery of a cardiovascular drug, heparin, loaded onto nitinol treated by electrochemical anodizing and chitosan coating. In this regard, the structure, wettability, drug release kinetics, and cell cytocompatibility of the specimens were analyzed in vitro. The two-stage anodizing process successfully developed a regular nanoporous layer of Ni-Ti-O on nitinol, which considerably decreased the sessile water contact angle and induced hydrophilicity. The application of the chitosan coatings controlled the release of heparin mainly by a diffusional mechanism, where the drug release mechanisms were evaluated by the Higuchi, first-order, zero-order, and Korsmeyer-Pepass models. Human umbilical cord endothelial cells (HUVECs) viability assay also showed the non-cytotoxicity of the samples, so that the best performance was found for the chitosan-coated samples. It is concluded that the designed drug delivery systems are promising for cardiovascular, particularly stent applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.